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Abstract

High explosives are an important class of energetic masansed in many weapons applications.
Even with modern computers, the simulation of the dynamendgial reactions and energy re-
lease is exceedingly challenging. While the scale of therdston process may be macroscopic,
the dynamic bond breaking responsible for the explosiveasa of energy is fundamentally quan-
tum mechanical. Thus, any method that does not adequatstyilde bonding is destined to lack
predictive capability on some level. Performing quantunthamics calculations on systems with
more than dozens of atoms is a gargantuan task, and seveoxiapgtion schemes must be em-
ployed in practical calculations. We have developed anédesdivide and conquer (DnC) scheme
to obtain total energies, forces, and harmonic frequendigsn semi-empirical quantum mechan-
ics. The method is intended as an approximate but fasteiicobo the full problem and is possible
due to the sparsity of the density matrix in many applicatiomhe resulting total energy calcu-
lation scales linearly as the number of subsystems, and #tkad provides a path-forward to
guantum mechanical simulations of millions of atoms.
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Chapter 1

Introduction

High explosives (HE), a class of reactive materials, ard egéensively in mining and weapons
applications. They are also used in fundamental researtiegsallow experimenters to achieve
pressures and conditions akin to the surface of stars arargegas giant planets that are extremely
difficult to probe otherwise. Designers and experimentaliemand ever-increasing control and
understanding of the detonation process to maximize tlegysahd accuracy of the applications.

Even today, the fundamental understanding of the detamatiocess is limited because mea-
suring the details of the detonation region is prohibitnifficult to perform [1]. Computer sim-
ulations can be of great value here. It is possible to nurallyisimulate the motions of atoms on
time and length scales of the denotation process (millidragans for many picoseconds). Most
atomistic simulations of detonation involve the use of ampl force fields describing the inter-
actions between atoms. The advantage of force fields is itnadegions involving thousands to
millions of atoms can be achieved. However, standard foetdsfido not describe the chemical
bond formation and breaking that is of paramount importantiee explosive energy release. More
elaborate force fields such as ReaxFF describing bonding Ibesn created [2, 3] and tested on
PETN for example [4]. However, the veracity is in questiothathigh temperatures of detonation.
It is in part a goal of this effort to assess the utility of REBxmethods for HE.

Molecular dynamics simulation (MD) is a powerful tool thaincbe used to examine physical
and chemical changes occurring at the atomic scale. Dewglgpedictive models of the initia-
tion of detonation and the sensitivity of high explosivemdads the large-scale coupling of both
chemistry and physics in the simulations.

Quantum mechanical methods such as traditional quantumistrg, density functional the-
ory, or semi-empirical methods intrinsically describe dimig and are the fundamental theory to
simulate detonation. However, even the most approximate-empirical quantum methods are
limited in the number of electrons and ions they can describi@s is because of a typicil®
or worse scaling rule for guantum mechanical eigensolwengreN is the number of electrons
involved. Current state-of-the-art implementations casatibe 100s to 1000s of atoms at some
level of quantum mechanics simulation. Recent efforts heeslab initio quantum MD to study
nitromethane [5, 6]. Even in this case, the effort is componally demanding and many ap-
proximations such as the tight-binding one must be us@&thp-shot density functional theory
(DFT)calculations - instantaneous frozen atomic posgionlimited time extend - have been per-
formed on small models of Solid Nitromethane, HMX, RDX, and?G [7].



In this SAND Report, we describe the development of a toolrtavidle quantum mechanical
simulations of high explosives that is intended to to be weitin the quantum molecular dynam-
ics (MD) formalism. The divide and conquer (DnC) scheme dan be generalized tab initio
and first principles quantum chemistry approaches wherelgnmpirical assumptions beyond the
validity of the Schrodinger equation.

The divide and conquer method in quantum chemistry goes toaploneering efforts by W.
Yang to linearize DFT within a local atom centered basis&€,[10, 11, 12, 13, 14]. He performed
a series of tests on polymers obtaining total energies atezticomputational cost. Other authors
have developed this work adding more sophisticated buégions and extending applicability
to otherab initio and quantum chemistry methods [15]. Recent large scaletetiave shown
promising results [16, 17, 18, 19, 20, 21, 22]. One of theqpile challenges when using divide
and conquer methods is the selection of subsystems. Seeegat attempts focus on using the
spatial positions of the atoms to design subsystems. Thefusierarchical real space grids to
perform DnC was attempted [23, 24]. A 3D fragment method vss @xplored [25].

The key idea in divide and conquer is that the diagonalipatiothe Fock matrix can be ap-
proximated efficiently when described in terms of a spatilitalized basis set. Diagonalization
of the Fock matrix typically scales & where N is the number of basis functions can be greatly
reduced in many situations. The full Fock matrix for a mamyrasystem with a band gap is sparse
in a local atom centered basis set. This is often describésrins of the short-sightedness of the
electron-electron interaction. Thus, knowledge of thatred locations of the atoms can be used
to reduce the full problem to many smaller sub-problemshWigudicious choice of subproblems,
the solutions can be expected to agree reasonably well falr ¢éaergy, forces on the ions, and
harmonic frequencies.

This work funded by ASC Fundamental Physics Codes and Agtics (P&EM), Com-
putational Materials and Atomistics Subelement, Atomi&nergetic Modeling project prior to
FY2012, and by the Component Performance (AF&F) sub-elémdry2012.



Chapter 2

Method

The basic idea of the divide and conquer (DnC) algorithm isrigpning of the density ma-
trix expressed in an atom centered basis into spatiallgtiblocks and to diagonalize a reduced
Hamiltonian in these blocks separately with care taken ttcmbetween blocks [8, 9, 10]. The
scheme allows the reduction of a the matrix diagonalizapiablem of ordeN3 to much lower
order, perhaps even order N for sparse Hamiltonians. Thas/est computational speed-up. The
scheme is physically motivated since in many realistic extstthe electronic density is locally de-
termined and can be described through local and semi-l@rdity functional methods, however,
certain aspects of long-range charge transfer and intengotan be neglected in DnC. Methods
have been developed to extract energy gradients from theltdaran fragments [11], and these
gradients are vital to implementing this scheme in moleedyaamic contexts. This DnC scheme
can be generalized to Hartree-Fock in addition to densitgtional methods thereby opening up
a wide array of semi-empirical method that can be used [26le &f the most challenging parts
of this framework is the choice of partitioning schemes, sexkral recent works have considered
efficient ways to partition the many atom systems [25, 24].

Figure 2.1. lllustration of a fragment and a buffer for simple
model of linear polymer. The purple and red atoms are thed@arb
and Hydrogen atoms respectively of the fragment. The blue an
azure atoms are the Carbons and Hydrogens of the buffer. iCa D
calculation the fragment and buffer regions are expliditgated

as a local problem and solved discretely. Global infornmeteeds
back into the calculation through the self-consistencyecgod the
construction of the Fock interaction matrix.

We have developed a program that uses the DnC algorithm torpequantum chemical cal-
culations of energies and forces on macro-molecules astieckl The divide and conquer scheme
takes advantage of sparsity. The DnC algorithm in DFT anchigua chemistry reduces the com-
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putational cost of diagonalizing the Fock operator. Forsteay with N basis functions, this re-
quires N’ operations. However, the Fock matrix is sparse for manyesysof interest such single
molecules and oxides, systems with an energy gap in thetgerislectronic states. For a sparse
matrix, many of these operations are on negligibly smaltouations. If each of the subproblems
is greatly smaller than the total system size, the scheneetefély reduces the required computa-
tions to order N. In practice it is convenient to define bufenes around each fragment that are
included in the subsystem calculations but do not conteifwity to the total energy.

. Fragment \:‘ Buffer

Figure 2.2. lllustration of a partitioned Fock matrix demonstrat-
ing that the principal support in a local basis is mostly kldag-
onal.

We have coded this method in the Python scripting language.tife quantum mechanics
solver, we use PyQuante, a python program that is capablaofirg quantum mechanics simula-
tions within density functional and semi-empirical formsats. The DnC implementation requires
the Python libraries Pypar, Scipy, and Numpy as well as Py@srequired dependencies. Calcu-
lations were performed on TLCC Glory cluster which has 27@gote nodes with 2.2GHz AMD
guad socket/quad core processors, 32 GB DDR2 RAM per nodinéintband with OFED stack
interconnect. Parallel DnC calculations of 1000 atom systevere performed using 4-18 nodes
(16 cores/node) and required a typical computation timgedrirom 24 to 80 hours in real time.
For each total energy point, the implementation is parail¢he calculation of the fragment plus
buffer systems.

The fragments can be chosen manually by appealing to obdisasete units such as picking
polymer monomers as was done in the earlier implementatiblosvever, a scheme to find the
forces for dynamically evolving systems requires autoamatAn attempt at a generalized scheme
was created based on a real space grid approach. The coéie bpethe entire multi-atom system
into subregions of space delineated by dividing the totalipeed volume by an integer of equally
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spaced planes in each dimension. The spatial boxes arent@preted as fragments. If the
fragment size is too small or too large, the number of reatseartitions can be adjusted. One
disadvantage of this scheme is that chemically bound elesmeight be in adjacent boxes where
it would make the most sense to keep them within the same gagr®nce an initial fragment is
chosen, the system tests to see that atoms within a chogset\edfbonding radius are added to the
fragment. This is a slow algorithm that involves balculations wherd\ is the number of atoms.
The effective bonding radius is varied to achieve the ddsikerage fragment size.

The total energy of the system within the DnC scheme is tleetozer the product of density
matrix (DM) and Fock matrix (FM) for the system. In the DnC sote, the DM is block diagonal
and the global trace can be written as a sum over fragmerdriudices:

Ea=Tr(DF)~ Y Tr(DiF). (2.1)

| =fragments

The fragment density matrix is obtained by diagonalizirg plortion of the FM that is supported
in the chosen fragment-buffer block and populating theltieguorbitals according to an effective
finite temperature weight function. The fragment-buffesstcibute to the global density matrix
through

Dy = pijaij (2.2)
where
plj=2 % fs (ér — &m) CliCim (2.3)

is the density matrix as calculated and constructed withérl ith buffer-fragment regiong/, is
the eigenvalue of thet+th KS orbital calculated for thé-th fragment-buffer systemC,'(.rn is a
coefficient of the eigenvector of the-th KS orbital on a basis function calculated for théh
fragment-buffer systemer is the global Fermi energy determined to ensure that thesfigitem
has the proper total number of electrorig.is the Fermi distribution function at effective inverse
temperaturgd wherea' is a weight function chosen to be

| 1 ifiandjbasis functions are both centered on fragment afom
al = (2.4)

e if either i or j basis function is centered on a fragment atom

NI

The divide and conquer algorithm starts by the selectiomagfrhents, sets of spatially proxi-
mate atoms that are likely to have significant chemical bmgppndOnce fragments are chosen, the
buffer regions are selected by determining which adjacagments are likely to affect the elec-
tronic structure of the fragment in question. The bufferd amgments must be redetermined for
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every reconfiguration of atomic nuclei. The self-consisjecycle starts after the fragments and
buffers are passed to the subsystem code. Each fragmeat byfitem is run as an independent
single iteration calculation. From this calculation, trendity matrix and eigenvalues is obtained.
The fragment density matrices can be assembled into thalgi¥, and the trace of this object
must be the total number of electrons. An internal loop &itie chemical potential for the entire
system until the correct number of electrons is describdte rEésulting global density matrix is
then used to recalculate the global Fock matrix. The entwegss is repeated until self-consistent.
The resulting density matrix can then be used to calculaénial energy.

Additionally, the forces can be calculated numericallydach atom using results of multiple
full system DnC calculations through

Fix = (E(X0+Aix) — E(X0)) /Bix (2.5)

wherexy denotes and reference configuration of atomic positiong\aee small displacement of
on of the positions of one of the atoms determining a compiooieiorce on that atom. The force
calculations can be performed for each atom and spatiattdireseparately leading to additional
scaling linear in the number of atoms.

Our implementation is for finite systems. Approximationgptamnons can be related to the
restoring forces each atom exhibits. The restoring frequerh vibration for each atom can be
calculated by perturbing the structure from equilibriund arsing finite energy differences over
displacements assuming a harmonic confinement. In a stabfgyaration of atoms, the force on
each atom vanishes. Slight perturbations about this camatfligm result in harmonic motion of the
nuclei with a frequency that can also be determined from tatargy calculations. Information
about the vibrational frequencies can be used to deterthephiononic spectrum once all modes
are known. The accurate and fast calculation of forces i®rapt in the description of reactions
of energetic materials.

This implementation described in this report uses MINDO3gmi-empirical quantum me-
chanical method chosen here for its simplicity and speed 287 29]. More accurate density
functional methods can be used instead, but this is notadailin the current implementation.
Generalization to DFT method follows straightforwardlydas currently being tested.

12



Chapter 3

Challenges

There are four major difficulties to establishing a robuseér scaling divide and conquer
(DnC) calculation capability. These are the choice of fragts, the assignment of buffers, self-
consistency problems, and the calculation of the Fock matri

The first is the assignment of fragments, distinct sets afmatan which the full quantum
mechanic problem is solved. The determination of thesesusitmostly arbitrary but must be
strongly guided by the relevant chemistry of the chemicateay. The general method used to
select fragments starts by calculating the volume of thieeemiany atom system. Then, the volume
is subdivided into spatially local groups. The spatial lggaups are tested to determine if they are
bound to nearest neighbor groups, and if so, the originalgga@an be combined. Determination
of whether to combine the groups depends on the averageddsagment size and the length of
the chemical bonds when detected. The cut-off criteria adligision of the entire volume are
adjusted until the desired average number of atoms per gagim achieved.

Our performance runs used a modified scheme for CL20. The@m fragments are assem-
bled by first finding all the nitrogen-nitrogen (N-N) bondgie CL20 molecule. This is done by
starting with one N atom then searching for the nearest dfheiom to it. Once an N-N bond is
found those two atoms are removed from the pool of N atoms la@dearch moves to the next
N atom to find its nearest N atom to form a bond. Once all the NaNds are found it then the
code finds the nearest carbon (C) atom to form a C-N-N moldgbelsame way it found the N-N
bonds. This is then repeated for the hydrogen (H) and 2 oxy@¢ratoms to form H-C-HN-O,
fragments. Once the fragments are chosen, the code gentrateuffers. The fragment selection
method was constructed to insure that all fragments aresttne sinit size, and the code checks so
that atoms are not included twice. Once the atoms are addeftagment they are removed from
the atom pool to avoid picking atoms multiple times. The geab create a method that gave the
user more control and accelerated the process. The genetfabdnis slow for larger systems such
as the 1152 atom system. The convergence and results ofidatalo depend on the judicious
choice of fragments. In our implementation we have chos@ictofragments with on average 6-8
atoms. The even number of atoms is chosen to keep an even naf@bectrons in the fragments.
And units of 6-8 are comparable to what was successful fompets. The actual numeric process
of picking out fragments goes as the number of atoms squaredhais violates linear scaling.
Considerable development is required here to implementdreification of fragments at a better
scaling and with more built-in chemical intuition. The dealge of determining fragments was
already discussed to some extent in the methods sectiomsafdbument.
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The next challenge is to determine the buffer regions. Tliebdetermines the boundary con-
ditions on each fragment calculation by accounting for tireminding region of space. Currently,
any other fragment within a certain radius of any atom in tiagrent is determined to be in the
buffer region. The matching of fragments to buffers is aladtee order of the number of frag-
ments squared. A different scheme must be developed toedHiscscaling. Typically 2-3 buffers
in each dimension is sufficient to converge the energies arad$ in our trials. Perhaps a more
judicious choice of fragments could allow a smaller numbdruffers. The actual diagonalization
of the global Fock matrix is of the fragment plus buffer bls@nd thus reducing the size of the
combined system greatly speeds the calculation.

The third challenge is the self-consistency of the dens#yrix. The DnC method is typically
run repeatedly with the Fock matrix calculated from the dgmaatrix of the previous cycle until
a chosen system measurable, typically, the total energgesao change between iterations within
a tolerance. However, the effective global density matisreated from the density matrices of
the fragments is prone to self-consistency issues. To a &xtgnt this problem can be ameliorated
by raising the effective temperature; however, the reguieenperatures are often several thousand
Kelvin and much higher than desirable. An alternative wdagdto used mixing schemes akin
to those used in all-electron quantum mechanical calanatio avoid oscillations in the SCF
process. Unfortunately, simple mixing schemes do not halgim Work needs to be done to
address specifically where the instability is arising, améw& method is likely needed to facilitate
convergence in general.

The fourth challenge is the calculation of the Fock matriisTtoo involvesN? operations
because of the Coulomb solve required. In our calculatismesexplicitly calculate the full Fock
matrix from the reassembled full density matrix. The patlinmprovement here is by using fast
multi-pole solvers to accelerate the calculation of thettdarand other Coulomb terms. Note that
in a first principle implementation, the exchange and cati@h terms are semi-local and only the
Hartree term posses this challenge.

14



Chapter 4

Results

In this section, we illustrate how the divide and conquer@pmethod can provide energies,
forces, and harmonics in excellent agreement with all Bdaatalculations for several ideal poly-
mer systems and for some models of the high explosive CL2@addlition to the typical parame-
ters required for a quantum mechanical simulation, thezdlaee additional parameters specific
to DnC, the size of the fragments themselves, the size ofufferlregions, and the effective tem-
perature. We have chosen to focus principally on the sizeutiebregions. Typical fragments
are assumed to be on the order of 6-8 atoms. This is the sidesuseessfully in earlier work on
polymers. The number of atoms in the buffer regions is higldpendent on the effective local
dimensionality of the problem. For example, it is found tiveéar polymers, which are effectively
1D, are typically well converged at buffers of about 4 times humber of atoms in the fragment.
For 3D systems such as unreacted CL20, this total can be 4 temger requiring 16 times the
number of atoms of the fragment.

As an initial test, we validated the method against ideal e®df polymers that have previ-
ously been studied with DnC. These ideal polymers are aactsil as perfect linear chains with a
discrete number of monomers each identified as a fragmegurés 4.1 and 4.3 shown the geom-
etry for 10 and 20 monomer chains of polyacetylene. The bastdrices are set at approximate
distances based on default settings in the molecular buildeis, these are not optimized geome-
tries and will provide a good test for both energies and fardde energies and forces are shown
to converge for PA10 in Figure 4.2. Because large portiorth@total energy and forces are the
same in DnC and a full calculation, we use normalized unifsxdé as the DnC result less the
exact limit divided by the exact limit. Good convergenceamts of energy is already seen with
buffer sizes of one monomer while forces require 2-3 mongmer

Figure 4.1. A idealized molecule of Polyacetylene-10 (PA10)
used in this work.
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Figure 4.2. Convergence of total energy and forces with respect
to the buffer size for PA10.

A similar trend is seen in Figure 4.4 where good convergeseelieved with buffers of 2-3
monomers. This is consistent with the DFT results found niexavork on polypeptides by Yang
[9, 10]. The curves in Figure 4.4 do not continue past 3 repeas. This is because the current
implementation limits in the total number of atoms allowedhe buffer-fragment regions to about
40 atoms due to requirements of the quantum mechanics swliled.

Figure 4.3. A idealized molecule of Polyacetylene-20 (PA20)
used in this work.

The principal goal of these efforts is to improve simulatiaf reactive materials. Thus, it
makes sense to test the implementation on a charactemsticeéevant reactive material. CL20 is
a nitroamine explosive also known as 2,4,6,8,10,12-hé&xafi4,6,8,10,12-hexaazaisowurtzitane
and HNIW. It is primarily used in propellants but is beingtezsfor stability and production ca-
pabilities for weapons potential. Because of an improveadiper-to-fuel ratio, it produces 20%
more energy than traditional HMX-based propellants, araftesn superior to other conventional
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Figure 4.4. Convergence of total energy with respect to the buffer
size for PA20.

high-energy propellants and explosives.

The designation CL20uc indicates that the simulation wafopaed on the system shown in
Figure 4.5. In the simulations, fragments are chosen to taiaithe integrity of the N-N@units
including carbons when needed. This structure (CL20uc)optisnized using periodic boundary
conditions, but for the testing of the divide and conquerhuétit was considered as an isolated
gas phase cluster. The forces on the atoms should be outwdhe ahe periodic simulation is
expected to slightly contract relative to the gas phase aBse the forces are non-vanishing, the
unit cell provides a good test system for both energies.

Figure 4.6 shows the convergence of the energy and forcesalacsunits as the number of
buffers is increased. The fragments are roughly 6 atoms. éBgha buffer size of 6 atoms, the
forces and energy is well converged. It is important to nbsd tvhile the absolute total error
in forces is initially much larger for systems without buffe the forces converge much faster
than energy with the size of the buffer. This scales as thd fower of the size of the buffer
fragment systems. While some efficiency can be achieved dtyilaliting the buffer-fragment
system calculations among several processors, it is aalyeotis to use a buffer-fragment system
with a size the maximizes the accuracy while balancing cdatfmnal time per fragment.

The exact energy and force results are in non-standard diiesenergy is the total energy of
the entire system. It includes atomization energies areteate energies of the atoms. The total
value is thus much larger than the relative energies tylpicesled. For example, the total energy
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Figure 4.5. A unit cell of CL20 contains four molecules. It is
treated in the gas phase as an isolated cluster in this work.

of the electrons in a carbon atom is about 0.6 keV, much l|aigar the eV energy scale of the
valence electrons. Additionally, the ion-ion energy islinied in the exact total. The forces are
calculated within the energy units chosen over angstroms.
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Chapter 5

Conclusion

The divide and conquer (DnC) method is a promising schemddw guantum mechanics
based calculations on systems with millions of atoms. Thashwd is an improvement over ex-
isting force field methods because it systematically inetubdond forming and breaking in simu-
lations. We have implemented and tested a parallel verditimeoTLCC clusters demonstrating
that DnC is capable of providing reliably accurate resutssfystems of interest: plastics, foams,
and explosives. However, considerable work remains to nf@kescheme a reliable workhorse
for predictive modeling of large systems. The current impatation works as expected diean
systems where the fragments and buffers can be chosen basédmical intuition or by algo-
rithm when there is a fortuitous positioning of the atomstha self-consistency cycle, the user
must often tweak the cycle parameters to achieve conveegdiine individual calculations can be
greatly accelerated by using more efficient solvers. Magmetbpments in the algorithm to select
fragments and their buffers will be required, and the im@atation of a fast multi-pole solver
in determining the Fock matrix is desired. It is possiblet #ngen with these developments con-
vergence will remain an issue. We recommend further exptoraf this method at Sandia first
focusing of the numerical selection of fragments and baffer
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